SYNTHESIS OF IMIDAZOLE DERIVATIVES FROM $\alpha\text{-HALOOXIMES}$ AND AMIDINES BY USE OF IRON CARBONYLS

Saburo NAKANISHI, Junji NANTAKU, and Yoshio OTSUJI
Department of Applied Chemistry, College of Engineering, University
of Osaka Prefecture, Mozu-Umemachi, Sakai, Osaka 591

The reaction of α -halooximes with amidines in the presence of iron carbonyls gives imidazole derivatives in good yields. This reaction occurs via deoxygenation of 4H-1,2,5-oxadiazines by iron carbonyls.

Iron carbonyls induce a variety of organic transformations. ¹⁾ They can be utilized even for heterocyclic transformations. For example, azirines can be converted into other heterocycles such as pyrroles, ^{2,3)} pyridines, pyrazines, and isoxazoles, depending on the structures of azirines and iron carbonyls employed. However, the selectivity in these transformations is not so high that several compounds are usually produced as by-products. Previously, we have shown that 5,6-dihydro-4H-1,2-oxazines, which are accessible from α -bromooximes and enamines, are converted selectively into pyrrole derivatives in high yields by deoxygenation with Fe₃(CO)₁₂. We now report the synthesis of imidazole derivatives from α -halooximes and amidines by use of iron carbonyls as a deoxygenating agent.

A mixture of α -bromoacetophenone oxime (1a, 1.0 mmol) and N-methyl-N-phenyl-benzamidine (2a, 5.0 mmol) in 1,2-dichloroethane (DCE, 20 ml) was stirred at room temperature for 4 h. Fe₃(CO)₁₂ (2.0 mmol) was added and the resulting mixture was heated at 80°C for 20 h. After adding silica gel (5g), the mixture was filtered and the filtrate was evaporated. The residue was chromatographed on silica gel with benzene-ethyl acetate (4:1) to give 2,4-diphenylimidazole (3a) in 74 % yield together with a 64 % recovery of the benzamidine used.

Similar treatment of a mixture of α -halooximes ($\underbrace{1a-f}$) and aromatic amidines ($\underbrace{2a-b}$) with Fe $_3$ (CO) $_{12}$ yielded the corresponding imidazole derivatives ($\underbrace{3a-f}$). The results are summarized in Table 1.

In these transformations, excess amidines were always needed in order to obtain the imidazoles in high yields although substantially all the unreacted amidines (>80%) were recovered by chromatography from the reaction mixtures.

Oxime		Amidine		Imida	Imidazole	
	R ¹	Х	2 ~	R ²	3≈	Yield, % ^{a)}
la	^С 6 ^Н 5	Br	2a ≈	^С 6 ^Н 5	3a ≈	74
	^С 6 ^Н 5	Br	2b	m-CH ₃ C ₆ H ₄	3b ≈	79
lb	с ₆ н ₅	Cl	2a ≈	С ₆ ^Н 5	3 <u>a</u>	68
lc	$p-CH_3C_6H_4$	Br	2a ≈	^С 6 ^Н 5	3c	69
l₫	p-BrC6H4	Br	2a ≈	С ₆ ^Н 5	3₫	73
le	СН3	Cl	2a ≈	^С 6 ^Н 5	3e ≈	59
<u>1f</u>	с ₂ н ₅ осо	Br	2a ~	^С 6 ^Н 5	3 . f	31

Table 1. Reaction of α -halooximes with amidines in the presence of Fe $_3$ (CO) $_{12}$

a) Isolated yields based on oximes used.

No imidazole derivatives were obtained from aliphatic amidines such as N-methyl-N-phenylacetamidine and N-methyl-N-phenylbutamidine. Among iron carbonyls examined, $\text{Fe}_3(\text{CO})_{12}$ was most effective for the above transformations; the efficiency of iron carbonyls for these transformations decreased in the following order: $\text{Fe}_3(\text{CO})_{12} > \text{Fe}_2(\text{CO})_9 > \text{Fe}(\text{CO})_5$.

A possible pathway of the reaction is shown in Scheme 1. α -Halooximes react with amidines to give 5,6-dihydro-4H-1,2,5-oxadiazines (4) by elimination of hydrogen halide. A base-catalyzed elimination of N-methylaniline from 4 affords the corresponding 4H-1,2,5-oxadiazines (5). Finally, the deoxygenation of 5 by iron carbonyls gives the imidazoles.

References

- 1) H. Alper, "Organic Synthesis with Iron Pentacarbonyl" in "Organic Synthesis via Metal Carbonyls", ed. by I. Wender and P. Pino, John Wiley and Sons, New York (1977), Vol. 2, p 545.
- 2) H. Alper and J. E. Prickett, J. Chem. Soc., Chem. Comm., <u>1976</u>, 191.
- 3) F. Bellamy, J. Chem. Soc., Chem. Comm., 1978, 998.
- 4) H. Alper and T. Sasakibara, Can. J. Chem., <u>57</u>, 1542 (1979).
- 5) S. Nakanishi, Y. Shirai, K. Takahashi, and Y. Otsuji, Chem. Lett., 1981, 869.
- 6) The reactions of la (1.0 mmol) and 2a (5.0 mmol) were carried out in the presence of Fe(CO)_5 (6.0 mmol), $\text{Fe}_2(\text{CO)}_9$ (3.0 mmol) and $\text{Fe}_3(\text{CO)}_{12}$ (2.0 mmol) under similar conditions described in text, giving 3a in the yields of 54 % for Fe(CO)_5 , 60 % for $\text{Fe}_2(\text{CO)}_9$ and 74 % for $\text{Fe}_3(\text{CO)}_{12}$.
- 7) Treatment of la with 2a in DCE at room temperature without added Fe $_3$ (CO) $_{12}$ gave 5,6-dihydro-3,6-diphenyl-4H-6-(N-methylanilino)-1,2,5-oxadiazine 4a in 51 % yield, mp 134-135°C :IR(KBr) 3280cm $^{-1}$ (vNH); NMR(CDCl $_3$) δ =3.10(3H,s,NCH $_3$) 5.19(2H,d,J=6 Hz, CH $_2$ NH), 6.5-6.7(1H,m,NH), 6.9-7.9 ppm(15H,m,C $_6$ H $_5$). Compound 4a was converted to 3a by treating with Fe $_3$ (CO) $_{12}$ in 93 % yield.
- 8) N-Methylaniline was obtained in high yield in all the imidazole-forming reactions.

(Received January 5, 1983)